Back to the Future: Fault-tolerant Live Update with Time-traveling State Transfer
نویسندگان
چکیده
Live update is a promising solution to bridge the need to frequently update a software system with the pressing demand for high availability in mission-critical environments. While many research solutions have been proposed over the years, systems that allow software to be updated on the fly are still far from reaching widespread adoption in the system administration community. We believe this trend is largely motivated by the lack of tools to automate and validate the live update process. A major obstacle, in particular, is represented by state transfer, which existing live update tools largely delegate to the programmer despite the great effort involved. This paper presents time-traveling state transfer, a new automated and fault-tolerant live update technique. Our approach isolates different program versions into independent processes and uses a semantics-preserving state transfer transaction—across multiple past, future, and reversed versions—to validate the program state of the updated version. To automate the process, we complement our live update technique with a generic state transfer framework explicitly designed to minimize the overall programming effort. Our time-traveling technique can seamlessly integrate with existing live update tools and automatically recover from arbitrary run-time and memory errors in any part of the state transfer code, regardless of the particular implementation used. Our evaluation confirms that our update techniques can withstand arbitrary failures within our fault model, at the cost of only modest performance and memory overhead.
منابع مشابه
Fault tolerant system with imperfect coverage, reboot and server vacation
This study is concerned with the performance modeling of a fault tolerant system consisting of operating units supported by a combination of warm and cold spares. The on-line as well as warm standby units are subject to failures and are send for the repair to a repair facility having single repairman which is prone to failure. If the failed unit is not detected, the system enters into an unsafe...
متن کاملA New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملA New Design of Fault Tolerant Comparator
In this paper we have presented a new design of fault tolerant comparator with a fault free hot spare. The aim of this design is to achieve a low overhead of time and area in fault tolerant comparators. We have used hot standby technique to normal operation of the system without interrupting and dynamic recovery method in fault detection and correction. The circuit is divided to smaller modules...
متن کاملFault-Tolerant Control of a Nonlinear Process with Input Constraints
A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process will be dependent on the actual evolving states, making their incorporation in the de...
متن کاملTransfer Function of Triple Modular Redundancy Fault-tolerant sensors system
This paper formulates the transfer function of Triple Modular Redundancy (TMR) Fault-tolerant sensors system. The first attempt was to present a practicable model of a triple modular redundancy faulttolerant system for sensors working synchronously with same input. Analogues and digital sensors are separately modeled to show the difference in their transfer functions as resulted from their diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013